
FRESCO: Open Source Data Repository
for Computational Usage and Failures
From Purdue’s Central Computing Clusters
Supported by NSF Grant No. CNS-1548114

Introduction
FRESCO is a repository of performance data for scientific code execution jobs submitted to
Purdue University’s Conte campus cluster. Data in the repository can be used to identify failed
jobs and analyze reasons for failure by studying the performance parameters during the job’s
execution on individual cluster nodes.

Conte Cluster Description
The Conte cluster consists of nodes with two 16 core Intel Xeon E5-2670 processors, two Xeon
Phi accelerator cards and 64GB of memory. The 580 nodes are connected through an FDR
Infiniband network at 40GB/s. Users are provided with a shared home directory as well as a
share for widely-used applications; both are available from each node via NFS at approximately
2GB/s. These filesystems are used for all clusters at the university and accessed using IP over
IB. The scratch filesystem used by the jobs is a Lustre 2.4 installation that can sustain up to
23GB/s and is connected via the above-mentioned IB network. Total capacity of the scratch
filesystem is 1.4PB. Each node has a local filesystem and the OS installations are stateful and
include a 2GB swap partition. All nodes run RedHat Enterprise Linux (RHEL) major version 6
and are regularly upgraded to the latest minor version; currently at 6.9. Along with default RHEL
libraries, the environment also provides many other important pre-installed libraries and
applications that can be loaded as needed. The nodes are administered using RedHat Kickstart
installers integrated with Puppet configuration management software.

Data Description
The FRESCO repository contains four categories of data collected over the period March 2015
through June 2017:

1. Accounting logs from the PBS job scheduler
2. TACC Stats performance data for each job
3. A listing of shared software libraries utilized by each job

4. Scheduled and unscheduled outages and downtime information for individual cluster
nodes.

A broad overview of these four data sources is in the figure below, detailed explanations of each
dataset follows.

Accounting Logs
Conte uses the open-source TORQUE implementation of the PBS job scheduling software.
TORQUE maintains a record of a batch job as it moves through the job submission queue and
eventual execution on the cluster. These records contain the event being recorded (e.g.,
queuing, job start, job end), corresponding timestamps, the submitting user or group, and
resources requested and used. TORQUE accounting logs contain these records organized by
date; each line in an accounting log file corresponds to a single event record for a job processed
on that date. The accounting logs employ a fixed format for these records:

<date> <timestamp>;<job event>;<jobID.node>;[<stats>]

where [<stats>] is an array of <key>=<value> pairs where the respective keys can depend on the
job event being recorded. For instance, a record of a queuing event would only contain
queue=debug; while a job start event would include the qtime, start, and exec_host keys
representing the time the job was queued, the time the job started running, and, the actual
nodes the job was executed on, respectively. These records are anonymized to remove

identifiable references to specific users, groups, queue or cluster nodes. Each record is then
formatted into a comma separated list and stored in a CSV file organized by job execution
month (torque/yyyy-mm.csv).

Job event types are encoded as single characters, according to the mapping table below:

Event

Code

Event

Type

Event Description

A abort Job has been aborted by the server

C checkpoint Job has been checkpointed and held

D delete Job has been deleted

E exit Job has exited (either successfully or unsuccessfully)

Q queue Job has been submitted/queued

R rerun Attempt to rerun the job has been made

S start Attempt to start the job has been made (if the job fails to
properly start, it may have multiple job start records)

T restart Attempt to restart the job (from checkpoint) has been made
(if the job fails to properly start, it may have multiple job
start records)

A complete description of all the fields in these accounting log CSVs is in the table below:

Field Name Description

jobID Anonymized version of identifier assigned by scheduler

timestamp Timestamp of accounting record

jobevent A one character job event code (refer to earlier table for
interpretation of the codes)

user User ID of the submitting user

group Group of the submitting user

jobname Descriptive job name specified by the user

queue PBS queue the job was submitted to

account Account to charge the job’s resources to

owner Owner for this job (may be distinct from submitting user)

requestor Account requesting this job (may be distinct from
submitting user)

Exit_status Exit status code (0 is success, others encode different
error conditions)

ctime Time job was created

qtime Time job was queued

etime Time job became eligible to run

start Time job started execution

end Time job ended execution

exec_host Nodes and cores where job is scheduled to run

Resource_List.ncpus Number of CPUs needed

Resource_List.neednodes Number of nodes needed

Resource_List.neednodes.ppn Number of processors per node requested

Resource_List.nodect Limits on number of nodes to be used

Resource_List.nodes Number of nodes requested for the job

Resource_List.nodes.ppn Processors per node requested for the job

Resource_List.mem Limits on the memory utilized

Resource_List.pmem Limits on the peak memory utilization

Resource_List.walltime Requested walltime for the job

Resource_List.naccesspolicy Type of access policy

resources_used.cput Amount of CPU time used by the job

resources_used.mem Amount of memory used by the job

resources_used.vmem Amount of virtual memory used by the job

resources_used.walltime Walltime used by the job for completion

session Session ID for the submitted job

TACC Stats Data
TACC Stats is a low-overhead infrastructure for collecting system-wide performance data for
each node at regular intervals. This performance data is drawn from various sources such as,
CPU usage, block device I/O, network usage, scratch and NFS filesystem I/O. TACC Stats data
for a particular job is subsequently extracted from this raw data for each of the nodes the job ran
on, based on the job accounting logs. The resulting cumulative data (for each device and
execution node) is serialized into an ASCII file using Python’s Pickle module. Our dataset
contains aggregations of the unpickled versions of each of these pickled job-level performance 1

datasets decomposed into 16 individual CSV files (one for each device being monitored). Each
CSV file contains performance data for the corresponding device type augmented with the job’s
unique ID, the identity of the node the data originated from as well as the timestamp of data
collection. A short description of each of these device types being monitored can be found in the
table below. Further details can be found in the paper “Comprehensive Resource Use
Monitoring for HPC Systems with TACC Stats”, Evans, et al., Proceedings of the First
International Workshop on HPC User Support Tools, 2014.

Device code Device short description

block Block device statistics (per device DEV)

1 “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy.

cpu Scheduler accounting (per CPU)

ib_ext Infiniband usage (per IB device)

intel_pmc3 Intel Nehalem performance statistics

llite Lustre FS (per mount)

lnet Lustre network (per mount)

mdc Metadata client (per mount)

mem Memory usage (per node)

net Network device usage (per device)

nfs NFS file system usage (per device)

numa NUMA statistics (per socket)

ps Process statistics (per node)

sysv_shm SysV shared memory segment usage (per
node)

tmpfs ram-backed file system usage (per node)

vfs Dentry/file/inode/cache usage (per node)

vm Virtual memory statistics (per node)

Data for jobs that was executed during a month is aggregated into a single CSV file for each
device type, for that month (each tacc_stats/yyyy-mm subfolder contains upto 16 individual
CSV files for that month). The headers for these CSVs also contain individual performance
parameter names for each of the monitored devices. An account of these data types where they
are not immediately apparent follows:

Device: vm

pgpgin: unit=B

pgpgout: unit=B

Device: llite

read_bytes: unit=B

write_bytes: unit=B

direct_read: unit=B

direct_write: unit=B

Device: block

rd_sectors: unit=B

rd_ticks: unit=ms

wr_sectors: unit=B

wr_ticks: unit=ms

io_ticks: unit=ms

time_in_queue: unit=ms

Device: ib_ext

port_xmit_data: unit=B

port_rcv_data: unit=B

Device: mem

MemTotal: unit=B

MemFree: unit=B

MemUsed: unit=B

Active: unit=B

Inactive: unit=B

Dirty: unit=B

Writeback: unit=B

FilePages: unit=B

Mapped: unit=B

AnonPages: unit=B

PageTables: unit=B

NFS_Unstable: unit=B

Bounce: unit=B

Slab: unit=B

Software Library Data
The library listing data contains a list of shared dynamic libraries that are currently loaded on a
cluster node during a job’s execution. This data is obtained by collating periodic snapshots of
the shared libraries currently in use on a cluster node (identified by the lsof command). Our
dataset contains aggregation of this data organized by month (liblist/yyyy-mm.tsv) in the
tab-separated value (tsv) format. Each tsv file lists the anonymized username, job identifier,
and, execution node, as well as, the library list and job exit status.

Outage and Downtime Data
Information about Conte’s infrastructure health is recorded in a MySQL database. This database
contains events pointing to planned system outages, reboots or alerts from monitoring
frameworks like Sensu [4] and Nagios [5]. We filter this data for our period of data collection
(only the year 2015 in this case). The filtered data is available in a single csv file
(kickstand_2015.csv) and contains the affected host, and, start and end timestamps for the
outage event. Our current analysis utilizes these timestamps and host fields to determine
downtimes of individual cluster nodes involved in a job’s execution. A separate account of
scheduled and unscheduled outages not recorded in the MySQL database, but reported in
Purdue University’s Research Computing group’s news feeds can be found in the file
Conte_outages.txt.

Accessing the FRESCO Data Repository

There are two approaches to accessing the FRESCO job scheduling and performance data.

Web Access
Interested users may open the FRESCO repository webpage
(https://www.rcac.purdue.edu/fresco/) and download the data they are interested it using the
links provided.

Globus
We recommend using Globus data transfer to download the FRESCO data since the transfers
need not be monitored once initiated, and will automatically resume even if your network
connection is interrupted. Most universities and research labs should have a Globus endpoint
that can be used to receive files. If you do not have access to a institutional Globus endpoint,
you can setup your own Globus Connect Personal endpoint on your personal machine and
transfer files to that endpoint. Instructions for setting up a Globus Connect Personal endpoint
can be found here. Instructions for transferring files from the FRESCO endpoint to the desired
target endpoint are below:

1. Access either your institution specific Globus transfer webpage, or the public Globus
transfer webpage (https://www.globus.org/app/transfer). You should see a file transfer
interface like the one below:

https://www.rcac.purdue.edu/fresco/
https://www.globus.org/globus-connect-personal
https://www.globus.org/globus-connect-personal
https://www.globus.org/app/transfer

2. Click on the Endpoint: field (that says “Start here…”) and search for the FRESCO public
endpoint in the search interface that pops up as shown below:

3. After selecting the Endpoint, you should be able to navigate through the repository contents.

4. If you would like to transfer files to your endpoint, select that endpoint in the right-hand panel.
You can select one or more files and click the arrow icon to start transferring files.

5. You can now close your browser window and check back later. You will also receive an email
when the transfer has completed or if any issues were encountered.

